PHYSICS FOR MEDICAL AND DENTAL (0342105) #### Recommended Textbook: # "Physics" Joseph W. Kane and Morton M. Sternheim, "Physics", 3rd edition, John Wiley & Sons, 1988. #### Recommended References: Raymond A. Serway, Christ Vuille and Jerry Faughn, 8th edition, (Brooks/Cole, 200x). Raymond A. Serway and John W. Jewett Jr., "Physics For Scientists and Engineers with Modern Physics" 7th edition, (Thomson Learning, Belmont, CA, USA, 2007). David Halliday, Robert Resnick, and Jearl Walker, "FUNDAMENTALS OF PHYSICS", 5th edition (Wiley, New York, 1997). Lecturers: . د احمد مساعده ، د محمود الجاغوب ، د سامي محمود ، د محمود الحسين #### Course Content: | Chapter | Content | Suggested
Problems | |----------|---|--| | Part 1 | Mechanics 1.2: Displacement; Average Velocity 1.3: Instantaneous Velocity | 21,23,28,34,42,45
,49,52 | | 6 weeks | 1.4: Acceleration1.5: Finding the Motion of an Object.1.6: The Acceleration of Gravity and Falling Objects. | | | | 2.1: Vectors 2.2: Velocity in Two Dimension 2.3: Acceleration in Two Dimension 2.4: Finding the Motion of an Object. 2.5:Projectiles (including the Supplementary Topics) | 7,9,18,19,22,29,3 | | | 2.6: Projectiles in Biomechanicals 3.1: Forces | 20 21 40 46 50 66 | | | 3.3: Newton's First Law 3.4: Equilibrium. 3.5: Newton's Third Law 3.6: Newton's Second Law | 29,31,42,46,52,66
,79,101,109 | | 100 75 K | 3.7: The Significance of Newton's Laws of Motion 3.8: Some Examples of Newton's Laws 3.12: Friction | * 18.6)
************************************ | | | 4.1: Torque 4.2: Equilibrium of Rigid Body. 4.3: The Center of Gravity. 4.5: Levers; Mechanical Advantage. 4.6: Muscles. 4.7: Levers in the Body | 7,8,11,13,17,21,4
1,51 | | | 6.1: Work
6.2: Kinetic Energy and the Work-Kinetic Energy Theorem | 6,11,15,22,37,69 | | - | 6.3: Potential Energy and Conservative Forces. 6.4: Dissipative Forces 6.5: Observations on Work and Energy 6.6: Solving Problems Using Work and Energy 6.9: Power | St. galv * | | Part 2 | Heat (Thermodynamics) | 3,8,17,18,19,26,2 | |---------|--|--------------------| | | 10.1: Temperature Scales. | 7,42,52 | | 4 weeks | 10.2: Molecular Masses | 1,72,52 | | | 10.3: Pressure | | | | 10.4: The Ideal Gas Law | r vtu , ,e | | | 10.5: Gas Mixtures | | | | 10.6: Temperature and Molecular Energy. | | | | 10.7: Diffusion | | | | 10.8 Dilute Solutions; Osmotic Pressure | Land Brack | | | 11.1: Mechanical Work | 1,2,7,8,9 | | | 11.2: The first Law of Thermodynamics | 1,-,,,,,, | | | 12.1: Thermal Expansion | 3,7,14,19,30,31,3 | | | 12.2 : Heat Capacity | 7 | | | 12.3: Phase Change | 748 20 1 | | Part 3 | Fluids | 1,3,10,12,21,23,5 | | | 13.1:Archimedes's Principle (Buoyant Forces) | 8 | | 1.5 | 13.2:The Equation of Continuity; Streamline Flow | Coulse | | weeks | 13.2:Bernoulli's Equation | | | | 13.4:Static Consequence of Bernoulli's Equation | | | | 13.5: The Rule of Gravity in Circulation | 1 1 1 1 1 1 1 | | | 13.6: Blood Pressure Measurements Using the | | | | Sphygmomanometer | | | Part 4 | Optics and radiation Physics | 1, 3, 4,7, 18, 21, | | | 24.1: Mirrors | 33 | | 1.5 | 24.2: Lenses | | | weeks | 24.3: Image Formation | | | | 24.4: The power of a Lens; Aberrations | | | | 24.5: The Simple Magnifier | | | | 24.7: The Human Eye | | | | 30.1: Radioactivity | 2, 3, 8, 10 | | | 30.2: Half-Life | | | 11 . 1 | 31.1: The Interaction of Radiation with Matter | | | | 31.2: Radiation Units | 15, 17,29,40 | | | 31.3: Harmful Effect of Radiation | | | | 31.5: Radiation in Medicine | | | Exams | Weight | Date of the exam | | | | | | | | |--------|--------|---|-----|--|--|--|--|--|--| | First | 20 % | Tuesday, March 20 th 2012 (5:00-6:00 | PM) | | | | | | | | Second | 30 % | Wednesday, May 2 nd 2012 (5:00-6:00 | PM) | | | | | | | | Final | 50 % | To be announced later | | | | | | | | ## Important dates: - * Sunday, May 20th. Last day of classes in the second semester 2011/2012 - * May 22- May 29. Final Examinations. ## Physics Department PHYSICS 105 (FIRST EXAM) FALL SEMESTER 2011/2012 (Nov. 2nd, 2011) | Student's Nam | e (In Arabic): | | | Registration # | <i>‡</i> : | Sec# | | |--|---------------------------------------|---|---|------------------|---|----------------------------------|---------------------| | Useful Informa | ation: Some Results | Are Rounded CON | SIDER (ACCELERAT | ION DUE TO GRA | AVITY) $g = 9.8$ | m/s ² | | | | | given as a functi $t = 0$ s and $t = 2$ | | 10 m + (10 m/ | s)t - (5 m/s ²)t ² . | What is the average | number (mining) and | | A) 0 m/s | B) -5 m/s | C) 5 m/s | D) 10 m/s | E) -10 | m/s | | | | | position as a fur
non-zero consta | | shown in Fig. 1. D | uring which ti | me interval cou | ld the object be possil | oly | | A) 4.1 s to 5.9
E) There is no | , | s to 7.9 s
consistent with c | C) 2.1 s to 3.9 s
constant non-zero a | , | l s to 1.9 s | 1 2 3 4 5 6 | 7 8 9 t(s) | | | | | | | | -2
-3
-4 | IG. 1 | | | | an object as a fu
0 s and time t = 9 | unction of time. W
9.0 s? | hat is the avera | age speed of | x (m) 5 4 3 2 | | | A) 0.11 m/s | B) -0.11 m/s | C) 0.33 m/s | D) 0.56 m/s | E) -0.33 m/s | | 1 2 3 3 5 | 5 7 8 9 t (s) | | \bigcirc | | | w v | | | 4 | FIG. 2 | | | | _ | of 8.00 m/s at an an
ade of the ball's vel | ~ | | tal. The ball leaves he
ound? | r hand | | A) 6.79 m/s | B) 7.45 m/s | C) 9.14 m/s | D) 1.22 m/s | E) 4.58 m/s | | | | | | horizontally off
what is the heigh | - | ff at 4.00 m/s. If th | e ball lands a o | distance of 30.0 | m from the base of th | e | | A) 92 | 2.0 m | B) 9.20 m | C) 138 | m | D) 552 m | E) 276 m | | | 6) An object of | of weight W is in | free-fall close to | the surface of Ear | th. What is the | force that the o | bject exerts on Earth? | | | A) a force equ
C) a force gre
E) cannot be | eater than W | | force less than W o force at all nformation | | | | ₩
æ. | | | | | | | | | | 7) Two masses are connected by a string which goes over an ideal pulley (frictionless and massless) as shown in Fig. 3. Block A has a mass of 3.00 kg and can slide along a rough plane inclined 30.0° to the horizontal. The coefficient of static friction between block A and the plane is 0.400. What mass should block B have in order to start block A sliding up the ramp? A) 2.54 kg B) 0.46 kg C) 3.20 kg D) 4.52 kg 8) A 5.00-kg object is initially at rest. The object is acted on by a 9.00-N force toward the east for 3.00 s. No force acts on the object for the next 4.00 s. How far has the object moved during this 7.00 s interval? A) 35.1 m B) 29.7 m C) 21.7 m D) 8.10 m E) 53.6 m 9) A box slides down an incline tilted at an angle 14.0° above horizontal, with an initial speed of 1.70 m/s. The coefficient of kinetic friction between the box and the incline is 0.380. How far does the box slide down the incline before coming to rest? A) 2.33 m B) 1.78 m C) 0.610 m D) 1.16 m E) The box does not stop. It accelerates down the plane. 10) A 4.00-kg block rests between the floor and a 3.00-kg block as shown in Fig. 5. The 3.00-kg block is tied to a wall by a horizontal rope. If the coefficient of static friction is 0.800 between each pair of surfaces in contact, what minimum force must be applied horizontally to the 4.00-kg block to make it move? A) 21.1 N B) 16.2 N C) 23.5 N D) 78.5 N E) 54.9 N # List your final answers in this table using Capital Letters Only the answer in this table will be graded.. | Question | Q1: | Q2: | Q3: | Q4: | Q5: | Q6: | Q7: | Q8: | Q9: | Q10: | |----------|-----|-----|-----|-----|-----|-----|-----|-----|---|------| | Final | | | | | | | | 750 | | | | Answer | | - | | | | | R | | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | | ## The University of Jordan ## PHYSICS DEPARTMENT | | (2nd EXAM) | | | an y timbre e di Catalonia qua que que pero en como una considera de como con espezio que y con caba de circula | ESTER (Dec. 20 th , 2 | | |---|--------------------------------------|---|-------------------|---|--|----------------| | Student's Name | (Arabic): | 9 9 9 9 8 8 8 5 5 5 10 12 0 8 5 6 6 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 | Registr | ration #: | Sec #. | | | Useful Informati | ion: Some Res | ults Are Rounded. | R = 8.314 J/(m | ole.K), $g = 10.0 \text{ m/s}$ | s ² . | | | | | | _ | at one end (A) and
ed so that the bear | _ | the other er | | A) 1.50 m | B) 1.71 m | C) 2.25 m | D) 1.29 m | E) 0.750 m | A
M ananana | B
www.ma | | | | | | s of 6 kg is located
n). Where is the ce | | | | A) (2 m, 1 m), | B) (1 m, 0.5 n | n) C) (0.5 m, 1 m | n) D) (1 m, 2 m | E) (1 m, 1 m) | | | | | | 10 kg and walks
one by this persor | _ | kis for a distance of
O friction) | f 100m with a cons | stant velocity | | A) 0 J | B) 20 J C) 10 | 000 J D) 20 | 00 J E) N | None of the other c | hoices is correct. | | | a height h, equ | al to height of
e frictionless ra | the truck's bed. T | The work done | One possibility is in this case is W1 7 figure. In this case | The other possibili | ty is to slide | | A) W1 = W2
C) W1> W2
E) No simple r | D) L | 71 < W2
W1=hW2
sts between W1 a | and W2. | h. | L | * | | | | | | n inclined plane of
s 10 m/s, how muc | , - | | | A) 100 J | В) -100 Ј | C) 200 J | D) -200 J | E) 0 | A STATE OF THE PARTY PAR | h=10 m | | 6) At what rate | e is a 60.0-kg be | oy using energy v | when he runs u | p a flight of stairs | 10.0-m high, in 8.0 | ♥
00 s? | | A) 80.0 W | B) 4.80 kW | C) 0.0 V | W D) 48 W | E) 750 W | | | | , | | nas a temperature
re (in °C) will be | e of 25°C. If the | volume is held co | nstant and the pre | essure is | D) 323 B) 596 A) 174 C) 50 E) 25 8) The figure shows a uniform, horizontal beam (length = 10 m, mass = 25 kg) that is pivoted at the wall, with its far end supported by a cable that makes an angle of 51° with the horizontal. If a person (mass = 60 kg) stands 3.0 m from the pivot, what is the tension in the cable? A) $$0.83 \times 10^3$$ N B) $$0.30 \times 10^3$$ N D) $$0.42 \times 10^3$$ N E) $$3.00 \times 10^3 \text{ N}$$ 9) A constant volume closed container of gas is at a pressure 1.00×10^5 N/m² and a temperature 20°C. What is the pressure (in 10⁵ N/m²) if the temperature of the gas is increased to 60.0°C? 10) How many water molecules are there in 36 g of water? Express your answer as a multiple of Avogadro's number NA. (The molecular structure of a water molecule is H2O.). The atomic masses of H and O are 1.008 u and 15.999 u, respectively. 11) A gas consists of particles each of mass 3.00×10^{-26} kg. What is the pressure (in N/m²) in a gas of these particles if there are 2.00 × 10²⁵ particles per cubic meter of gas and the rms speed of the particles is 400 m/s? A) $$4.80 \times 10^{4}$$ B) $$1.60 \times 10^4$$ C) $$1.01 \times 10^5$$ D) 9.60×10^4 E) $$3.20 \times 10^4$$ 12) Two identical containers, A and B, hold equal amounts of the same ideal gas at the same Po, Vo and To. The pressure of A then decreases by a half while its volume doubles; the pressure of B doubles while its volume decreases by a half. Which statement correctly describes the temperatures of the gases after the changes? A) $$T_A = 0.5T_B = T_O$$. B) $$T_B = 0.5T_A = T_O$$. C) $$T_B = 2T_A = T_O$$. D) $$T_A = T_B = T_O$$. E) $$T_B = 2T_A = T_O$$. #### List your final answers in this table. Only the answer in this table will be graded. | Question | Q1: | Q2: | Q3: | Q4: | Q5: | Q6: | Q7: | Q8: | Q9: | Q10: | Q11: | Q12: | |----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | Final | | | | | | | | | | | | | | Answer | | | | | | | | | | | | | ## The University of Jordan ## PHYSICS DEPARTMENT | | (2nd EXAM) | | | an y timbre e di Catalonia qua que que pero en como una considera de como con espezio que y con caba de circula | ESTER (Dec. 20 th , 2 | | |---|--------------------------------------|---|-------------------|---|--|----------------| | Student's Name | (Arabic): | 9 9 9 9 8 8 8 5 5 5 10 12 0 8 5 6 6 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 | Registr | ration #: | Sec #. | | | Useful Informati | ion: Some Res | ults Are Rounded. | R = 8.314 J/(m | ole.K), $g = 10.0 \text{ m/s}$ | s ² . | | | | | | _ | at one end (A) and
ed so that the bear | _ | the other er | | A) 1.50 m | B) 1.71 m | C) 2.25 m | D) 1.29 m | E) 0.750 m | A
M ananana | B
www.ma | | | | | | s of 6 kg is located
n). Where is the ce | | | | A) (2 m, 1 m), | B) (1 m, 0.5 n | n) C) (0.5 m, 1 m | n) D) (1 m, 2 m | E) (1 m, 1 m) | | | | | | 10 kg and walks
one by this persor | _ | kis for a distance of
O friction) | f 100m with a cons | stant velocity | | A) 0 J | B) 20 J C) 10 | 000 J D) 20 | 00 J E) N | None of the other c | hoices is correct. | | | a height h, equ | al to height of
e frictionless ra | the truck's bed. T | The work done | One possibility is in this case is W1 7 figure. In this case | The other possibili | ty is to slide | | A) W1 = W2
C) W1> W2
E) No simple r | D) L | 71 < W2
W1=hW2
sts between W1 a | and W2. | h. | L | * | | | | | | n inclined plane of
s 10 m/s, how muc | , - | | | A) 100 J | В) -100 Ј | C) 200 J | D) -200 J | E) 0 | A STATE OF THE PARTY PAR | h=10 m | | 6) At what rate | e is a 60.0-kg be | oy using energy v | when he runs u | p a flight of stairs | 10.0-m high, in 8.0 | ♥
00 s? | | A) 80.0 W | B) 4.80 kW | C) 0.0 V | W D) 48 W | E) 750 W | | | | , | | nas a temperature
re (in °C) will be | e of 25°C. If the | volume is held co | nstant and the pre | essure is | D) 323 B) 596 A) 174 C) 50 E) 25 8) The figure shows a uniform, horizontal beam (length = 10 m, mass = 25 kg) that is pivoted at the wall, with its far end supported by a cable that makes an angle of 51° with the horizontal. If a person (mass = 60 kg) stands 3.0 m from the pivot, what is the tension in the cable? A) $$0.83 \times 10^3$$ N B) $$0.30 \times 10^3$$ N D) $$0.42 \times 10^3$$ N E) $$3.00 \times 10^3 \text{ N}$$ 9) A constant volume closed container of gas is at a pressure 1.00×10^5 N/m² and a temperature 20°C. What is the pressure (in 10⁵ N/m²) if the temperature of the gas is increased to 60.0°C? 10) How many water molecules are there in 36 g of water? Express your answer as a multiple of Avogadro's number NA. (The molecular structure of a water molecule is H2O.). The atomic masses of H and O are 1.008 u and 15.999 u, respectively. 11) A gas consists of particles each of mass 3.00×10^{-26} kg. What is the pressure (in N/m²) in a gas of these particles if there are 2.00 × 10²⁵ particles per cubic meter of gas and the rms speed of the particles is 400 m/s? A) $$4.80 \times 10^{4}$$ B) $$1.60 \times 10^4$$ C) $$1.01 \times 10^5$$ D) 9.60×10^4 E) $$3.20 \times 10^4$$ 12) Two identical containers, A and B, hold equal amounts of the same ideal gas at the same Po, Vo and To. The pressure of A then decreases by a half while its volume doubles; the pressure of B doubles while its volume decreases by a half. Which statement correctly describes the temperatures of the gases after the changes? A) $$T_A = 0.5T_B = T_O$$. B) $$T_B = 0.5T_A = T_O$$. C) $$T_B = 2T_A = T_O$$. D) $$T_A = T_B = T_O$$. E) $$T_B = 2T_A = T_O$$. #### List your final answers in this table. Only the answer in this table will be graded. | Question | Q1: | Q2: | Q3: | Q4: | Q5: | Q6: | Q7: | Q8: | Q9: | Q10: | Q11: | Q12: | |----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | Final | | | | | | | | | | | | | | Answer | | | | | | | | | | | | | | Student Nai | me: | | | 1 | |---------------------------------------|--|--|---|---| | Student Nui | | region is to a serious transferrable and the serious of the analysis and and the serious serio | | Number: | | | | | | = 2.1 J/g. K; L_f (ice) = 333 J/g | | $g = 9.8 \text{ m/s}^2$. ρ_{wa} | $a_{\text{ter}} = 1000.0 \text{ kg/m}^3 \text{ and}$ | $d P_{atm} = 1.013 \times 10^5 Pa.$ | Note: Some Re | esults Are Rounded | | | | e moving along the x e (in m) at $t = 3.0$ s? | | /hat is the total | | A) -1 | B) -2 | C) 0 | | 1 V _r ^(m/s) | | D) 2 | E) 1 | | | 0 1 2 3 | | | | el ground at an angle
he initial position wo | | norizontal with a speed of und? | | A) 164 m | B) 105 m | C) 203 m | D) 54.2 m | E) 12.4 m | | | orce (in N) exerted
ean depth of 100 r | | 60-cm diameter s | ubmarine window (circular) | | A) 69272 | B) 305730 | C) 12229215 | D) 152823 | E) 277089 | | | | er is compressed at 7
les) in the cylinder. | .5 atmospheric pr | essure and 300 K. What is | | A) 305 | B) 30 | C) 61 | D) 0.61 | E) 61000 | | should t | he water pressure | a water tank at the t
at the base of the bu
atm = 1.013 bar) | | building, what
eed of water is constant | | A) 1.0 bars | B) 0.3 bars | C) 0.5 bars | D) 3.0 bars | E) 2.0 bars | | | | | | to the horizontal and with high is the building (in m)? | | A) 25 | B) 4 | C) 10 | D) 64 | E) 14 | | 7) The temper | rature of 0.5 mole | | rigid container is | raised from 300 K to 434 K. | | | | C) 835.6 | | | | 8) The linear | expansion coeffic | ient for Al is $\alpha = 2.2$ emperature of the pla | $\times 10^{-5} \text{ K}^{-1}$. What is | s the increase in area of °C? | | A) 2.2 cm^2 | B) 22 cm ² | C) 4.4 cm ² | D) 6.6 cm ² | E) 66 cm ² | | | s greater density th
r. Which statemen | | ooat floats in equilib | rium in both fresh water | |---|---|--|--|--| | B) Buoyant force C) Buoyant force D) The volume | ce excreted by freslower is the same in boot of the displaced w | n water is greater th | an that by fresh water
nan that by salt water
noth. | er. | | | ock of ice at –10 °C
absorbed in the pro | | converted into water | er at 10 °C. What is the | | A) 167 | B) 177 | C) 198 | D) 21 E) 188 | | | | | | early winter due to: | A 11 | | B) Water mixing C) Water mixing D) The lower of | ng resulting from the
density of ice relati | he lower density of
he higher density of
ve to water. | water at lower temp
f water at lower temp
ee waves in early wi | peratures. | | body to decreas | se to one-fourth its |). How long will it to original magnitude ife (T_b) of 180 day | ? Given that (131 I) ha | I radioactivity in her as physical half-life (T_p) | | A) 16.2 days | B) 360 days | C) 376.2 days | D) 15.5 days | E) 7.75 days | | 13) What volur liquid of density | me fraction of a culty ($\rho_0 = 1.01 \text{ g/cm}^3$ | be of density ($\rho = 0$)? | .50 g/cm³) would sir | ak under the surface of a | | A) 0.80 | B) 0.67 | C) 0.33 | D) 0.:50 | E) 0.20 | | 14) An ideal ga | | abatic expansion w | hile doing 25 J of w | ork. What is the change | | A) zero | B) 25 J | C) -25 J | D) 50 J | E) -50 J | | 15) The work in internal ener | | as system in an isot | hermal process is 40 | 0 J. What is the change | | A) -400 J | B) zero | C) 200 J | D) 400 J | E) none of the above | | concentration | of sugar in the solu | ution (in moles/m³) | nominal temperature
is:
by that of water, 100 | | | A) 29.2 | B) 20.0 | C) 2.0 | D) 41.3 | E) 10.0 | | | | | | | 23) A uniform 100 N beam is held in a vertical position by a pin (P) at its lower end and a cable at its upper end. A horizontal force of magnitude F = 75 N acts as shown in the figure. What is the tension in the cable? A) 47 N B) 69 N C) 61 N D) 94 N E) 54 N 24) In the Figure, fluid fills the container shown here. At which of the indicated points is the pressure greatest? A) A B)B C) C D) D E) The pressure is the same at each of the labeled points. 25) In the shown Figure, the net work done by the gas during the close cycle is equal to: A) 4.00 kJ B) 12.0 kJ C) 16.0 kJ D) 20.0 kJ E) 8.00 kJ ## List your final answers in this table. Only the answer in this table will be graded | QUESTION | Q1: | Q2: | Q3: | Q4: | Q5: | Q6: | Q7: | Q8: | Q9: | Q10: | Q11: | Q12: | Q13: | |----------|------|------------------------------------|-----------------------------------|------|------|------|------|------|------|------|------|------|------| | Final | | | | | | | | | 1, | , | | | | | Answer | | | | | | | | | | | | | | | QUESTION | Q14: | Q15: | Q16: | Q17: | Q18: | Q19: | Q20: | Q21: | Q22: | Q23: | Q24: | Q25: | | | Final | | Distriction Later, Property States | Constitution of the second second | | | | | | | | | | | | Answer | | | | | | | | | | | | | | **Text Book: "Physics" by Joseph Kane & Morton Sternheim 3rd Edition, 1988, New York, John Willey and Sons Inc. #### Selected References: 1. "Fundamentals of Physics" by D. Halliday & R. Resnick, 4th Edition, 1993, John Willey and Sons Inc. "Physics for Scientists and Engineers" by R. Serway, 5th Edition, Saunders, 2000. #### Course Content: | Chapter No. | Required Sections | Suggested Problems | |-------------|----------------------|------------------------------| | 1 | 1.1-1.6 | 21,23,28,34,42,45,49,52 | | 2 | 2.1-2.5 | 7,9,18,19,22,29,31,36 | | 3 | 3.1-3.8, 3.12 | 29,31,42,46,52,66,79,101,109 | | 4 | 4.1-4.3 | 7,8,11,13,17,21,41,51 | | 6 | 6.1-6.6 | 6,11,15,22,37,69 | | 7 | 7.1-7.4 | 3,4,12,15,20,26,29,30 | | 10 | 10.1-10.8 | 3,8,17,18,19,26,27,42,52 | | 11 | 11.1-11.2 | 1,2,7,8,9 | | 12 | 12.1-12.6 | 3,7,14,19,30,31,37 | | 13 | 13.1-13.4 | 1,3,10,12,21,23,58 | | 16 | 16.1-16.4,16.8-16.10 | 5,6,9,11 | | 17 | 17.1-17.5,17.12 | 5,11,23,31,37,43,45 | | 30 | 30.1-13.2 | | | 31 | 31.1-31.4 | 7 . | #### ** Examinations: To be Announced Later #### **Lecturers:** د احمد مساعده ، د محمود الجاغوب ، د سامي محمود ## PHYSICS DEPARTMENT MENT PHYSICS 105 (FIRST EXAM) FALL SEMESTER 2010/2011 (Oct. 24th, 2010) | Studer | nt's Name (In | Arabic): | | F | Registration # | # : | | | | | | |--------|---|---|--------------------------------------|------------------------------------|-----------------------------|-----------------------------------|---------------------------|--|--|--|--| | Useful | Information: | Some Results Are R | tounded CONSID | ER (ACCELERA | ATION DUE T | O GRAVITY) § | $g = 9.8 \text{ m/s}^2$. | | | | | | 1. | A particle mo $x = 10 \text{ m}$. Its | oving with a const
position 5.0 s late | ant acceleration r is $x = -30$ m. V | has a velocity
What is the acce | of 20m/s wheleration of the | en its position
he particle in | n is (m/s ²). | | | | | | | a) -7.3 | b) -8.9 | c)-11. | 2 d) | -15 | e) 8.0 | | | | | | | 2. | | projected vertically
e magnitude of the | | | | | | | | | | | | a) 9.8 | b) 0.0 | c) 34.3 | d) | 14.3 | e) 20 | | | | | | | 3. | | cked from the growthe ball is 20 m/s, | | | | | | | | | | | | a) 0.00 | b) 20.0 | c) 12.5 | | d) 17.32 | e) 10.0 | | | | | | | 4, | angle of 37 | er 40 m a way from a bove the horizon the building? | | | | | | | | | | | | a) 29.03 | b) 16.48 | c) 20.80 | d) 1.00 | , | 18.70 | | | | | | | 5. | In the figure shown $M = 10$ kg and $m = 4$ kg. The coefficient of kinetic friction between the inclined surface and mass m is $\mu_k = 0.3$. Given that the system started from rest, find the speed (in m/s) of mass M when it has fallen a distance of 2 m. | | | | | | | | | | | | | a) 2.96
c) 4.42
d) 2.1 | b) 3.60
d) 3.96 | | | | m | M | | | | | | | | | | | 300 | | 12 2 3 A | | | | | | 6. | | zontal surface on v
25 N. The tension | | | onless. If m | = 2.0 kg, and | the magnitude | | | | | | | a) 2.5 | b) 0.0 | c) 10.0 | | 2 2m | 1 | 2m | | | | | | | d) 15.0 | e) 5.0 | | m | | | | | | | | - 7. A 3-kg block is pushed against the wall by a force F = 40 N that makes a 30° angle with the horizontal. If the force is just enough to hold the block without sliding down, then the coefficient of static friction (μ_s) is equal to: - a) 0.168 - b) 0.200 - c) 0.271 - d) 0.98 - e) 0.262 - 8. A stone is projected with an initial speed $v_o = 10$ m/s at 30° above the horizontal from the top of a building which is 30 m high. The speed (in m/s) of the stone just before it hits the ground is - a) 26.23 - b) 5.00 - c) 8.67 - d) 10.0 - e) 0 - 9. A plane flies south at 500 km/h for 2h and then flies west at 500 km/h for 1 h. What is its average speed (in km/h)? - a) 372.7 - b) 500 - c) 0 - d) 333.3 - e) 166.7 - 10. The diagram below shows 3 vectors all of equal length. Which statement below is true? a) $$\vec{A} + \vec{B} = \vec{A} - \vec{C}$$ b) $$\vec{A} + \vec{B} = \vec{B} - \vec{C}$$ c) $$\vec{A} - \vec{B} = 2\vec{A} - \vec{C}$$ d) $$\vec{A} - \vec{B} = 2\vec{A} + \vec{C}$$ e) $$2\vec{A} + 2\vec{B} = 2\vec{C}$$ ## List your final answers in this table. Only the answer in this table will be graded. | Question | Q1: | Q2: | Q3: | Q4: | Q5: | Q6: | O 7: | 08: | 09: | O10: | |----------|-----|-----|-----|-----|-----|-----|-------------|-----|-----|------| | Final | | | | | | | | | | | | Answer | | | | | | | | | | | ## PHYSICS 105 (2nd EXAM) SECOND SEMESTER (Dec. 5th, 2010) | Jsetul Information: Soi | me Results Are Rour | ided CONSIDER (AC | CELERATION DUE | FO GRAVITY) $g = 9.8 \text{ m/s}^2$ | |---|---|---|--|---| | . A car traveling at 1
the windshield (مامي
head is 4kg, the av | head fi (الزجاج الا | with a tree. An uni | restrained (ام الامان)
rest in 0.0016 s. If | لم يربط حز) passenger strikes
the mass of the passenge | | (a) 31250 | (b) 25000 | (c) 20000 | (d) 50000 | (e) 88500 | | the composite of | ject is moving at | ides with and sticks
3.0 m/s in a direction
and of the 2.0-kg obj | on parallel to the in | object. After the collision itial direction of motion of the sion in (m/s). | | (a) 27.0 | (b) 19.7 | (c) 3.0 | (d) 28.3 | (e) 1.5 | | 3. A 2.5-kg object fal | ls vertically dov | vnward in a visco | us medium at a co | onstant speed of 2.5 m/s. erts on the object as | | (a) +19.60 | (b) -19.60 | (c) +1.96 | (d) -1.96 | (e) +39.2 | | | | | | | | | | | | 0 4 8 t (s | | 5. A steel band exerts a torque in (N.1 | | on a tooth at point about the point A? | B as in the figure. V | 0 4 8 | | | | | B as in the figure. V | 0 4 8 | | (a) 0.712
(d) 0.0 | (b) 0.480
(e) 0.831
pushed up a fricontal force F = 6 | (c) 0.642 | e a from point A to | 0 4 8 What is the | | 7. In the figure, the weight of the rod $W = 500 \text{ N}$, and its length $l = 8 \text{ m}$. The rod is at equilibrium making an angle 45° with the x-axis. The tension T in the rope connecting the end of the rod to the wall is: (a) 50 N (b) 352 N (c) 250 N (d) 500 N (e) 707 N | | |---|--| | 8. In the above question, what is the vertical component of the reaction force that acts on the rod by the hinge? | | | (a) 352 N (b) 500 N (c) 707 N (d) 100 N (e) 250 N | | | 9. When a ball rises vertically to a height h and returns to its original point of projection, the work done on it by the gravitational force is | | | (a) 0. (b) $-mgh$ (c) $+mgh$. (d) $-2mgh$. (e) $+2mgh$. | | | (a) It moves with a constant speed. (b) The net external force acting on it is zero. (c) The net torques acting on it about any axis is zero. (d) The net internal and external forces acting on it is zero (e) The net external force is zero, and the net external torque on it about any axis is zero. | | | 11. An object of mass m1 moving in the positive x – direction undergoes a head-on elastic collision with a mass m2 which is at rest. Which of the following statements is WRONG? | | | a) After the collision the two objects may move in opposite directions. b) After the collision the two objects may move in the same direction. c) After the collision both objects can be at rest. d) Kinetic energy is conserved in this collision. e) During the collision they act on each other with equal and opposite forces. | | | 12. A small object of mass <i>m</i> slides along the frictionless track in the figure, staring from rest at point A. What is its speed (in m/s) at point B? A | | | (a) 6.3 (b) 7.7 (c) 0.0 | | | (d) 9.9 (e) 4.4 | | | List your final answers in this table. Only the answer in this table will be graded | | | Question Q1: Q2: Q3: Q4: Q5: Q6: Q7: Q8: Q9: Q10: Q11: Q12: | | | Final | | Physics 105 Final Exam First Semester 2010/2011 9/1/2011 | Student Name: | 10 | |---|--| | Student Number: | Section Number: | | Information : $R = 8.314 \text{ J/mole.K}$; $k_B = 1.38 \times 10^{-2}$ | 3 J/K; c_{P} (water) = 4.2 J/g. K; c_{P} (ice) = 2.1 J/g. K; L_{f} (water) = 333 J/g. | $$(e) -6$$ 2. What is the number of molecules (in units of Avogadro's number N_A) in a 1.1 kg of a gas whose molecular mass is 44.0 u? a. $$1.1 N_A$$. b. 25 $$N_A$$. 3. Find the total force (in N) exerted on the outside of a 30-cm diameter submarine window at an ocean depth of 100 m. Assume $$\rho_{water} = 1000.0 \text{ kg/m}^3$$ and $P_{atm} = 1.013 \times 10^5 \text{ Pa}$. 5. An ideal gas is taken from an initial $$(P_i, V_i, T_i)$$ to a final state (P_f, V_f, T_f) in an *adiabatic* process. In this process: a. $$T_i = T_f$$ b. $$O = W$$. c. $$\Delta U = Q$$ $$d. P_i = P_d$$ b. $$Q = W$$. c. $\Delta U = Q$. d. $P_i = P_f$. e. $\Delta U = -W$. a. $$Q = W$$. b. $$\Delta U = Q$$ c. $$\Delta U = -W$$ d. $$Q = 0$$ e. The gas looses heat $$(Q < 0)$$ in the process. 8. The linear expansion coefficient for Al is $$\alpha = 2.2 \times 10^{-5} \text{ K}^{-1}$$. What is the increase in volume of a block of 1 m³ of Al if the temperature of the block is raised by 10 °C? c. $$660 \text{ cm}^3$$ $$d. 22 cm^3$$ | | an initial spe | ovn upward from the sed of 15 m/s. If the b. 14 | e stone is in flight | for 3.0 s, how | tall is the buil | ding (in m) | |-----|---|--|--|---|---------------------------------|----------------------| | 11. | A 0.5 kg block | b. 14
of ice at – 5 °C is hat absorbed in the | neated until it is co | | | What is the | | | a. 167 | b. 172 | c. 193 | d. 21 | e. 188 | haran a
hasalqada | | 12. | | the deep waters in | | | | r _E 1 | | | b. Water m
c. Water m
d. The lowe
e. Water m | n of air molecules to ixing resulting from ixing resulting from er density of ice relations resulting from ixing resulti | m the lower densith the higher densite to water. In turbulence and | ty of water at lot
the see waves i | ower temperat
n early winter | ures. | | 13. | | n ideal gas has a
essure is double | | | | constant | | | -a. 174 | b. 323 | c. 50 d. 5 | 96 e. | 25 | | | 14. | | f a cube of density = 1.2 g/cm ³)? | $(\rho = 0.8 \text{ g/cm}^3) \text{ w}$ | ould sink unde | r the surface o | f a liquid o | | | a. 0.80 | b. 0.67 | c. 0.33 d. 0.3 | 2 e | . 0.5 | | | 15. | should the wa | pumped into a wa
ter pressure at the
ater pipe? ? (1 bar | base of the building | ng be if the spee | | | | | a. 1.0 bars | b. 2.0 bars | c. 0.5 bars | d. 3.0 bars | e. 0.3 bar | ·s | | 16. | embedded in | s fired into a 3.0-k
it. The pendulum
initial speed of th | subsequently rise | s a vertical dista | | | | | a. 768 | b. 385 | c. 250 | d.820 | e. 405 | | | 17. | shown in the figures P , and a. $v_a < v_b$.
b. $P_a > P_b$ s | reamline, nonvisco
igure. Which of the
d flow rate Q at the
ince no work is do
(Q is the flow rate | e following statem
to two ends of the some during a constant | nents is correct section? $A_a = \frac{1}{2}$ | regarding the | | 18. The level of the fluid with density $\rho_s = 1000 \text{ kg/m}^3$ in the left arm of the manometer is 0.2 m above the manometer fluid of density $\rho_f = 800 \text{ kg/m}^3$ in the right arm. Which of the following relations is true? - a. P_G is 2000 Pa higher than P_{atm} . - b. $P_G = P_{atm}$. - c. P_G is 2000 Pa lower than P_{atm} . - d. P_G is 4000 Pa higher than P_{atm} . - e. P_G is 6000 Pa higher than P_{atm} - 19. Two masses (m₁=2kg, m₂=3kg) connected by a cord and m₂ pulled by a force of 9 Newton. The minimum value of "f" (in N) which is needed to keep the cord tight: - a) 6 d) 15 - b. 9 - c.12 - e. 18 - 20. If two objects M_1 , M_2 ($M_1 = M_2$) are connected by a light inextensible cord which is attached to the ceiling of an elevator that is accelerating upward at 2 m/s², the ratio T/T_1 - a. 5/3 - b. 2 - c.1 - e. 0.5 21. The frictional force between mass 2M and the surface is zero, and the frictional force between masses M and 2M causes both masses to move together when a F = 1.2 N is applied to 2M. If M = 1 kg, what is the frictional force exerted by the large block on the small block? d. 3/2 - a. 0.4 N to the lef - b. 0.8 N to the right - c. 0.4 N to the right e. 1.2 to the right - d. 0.8 to the left - F = 1.2 N - 22. The absolute temperature of an object is 300 K. What is its temperature on the Fahrenheit scale? - a. 80 °F. - b. 96°F. - c. 106 °F. - d. 47 °F. - e. 90 °F. - 23. A block slides on a rough horizontal surface from point A to point B. A force (P = 2.0 N) acts on the block between A and B, as shown. Points A and B are 1.5 m apart. If the kinetic energies of the block at A and B are 5.0 J and 4.0 J, respectively, how much work is done on the block by the force of friction as the block moves from A to B? - a. -3.3 J - b. +1.3 J - c. +3.3 J - d. -1.3 J - e. +4.6 J 23. A uniform 100 N beam is held in a vertical position by a pin (P) at its lower end and a cable at its upper end. A horizontal force of magnitude F = 75 N acts as shown in the figure. What is the tension in the cable? a. 47 N b. 69 N c. 61 N d. 94 N e. 54 N 24. A 3.0-kg object moving in the positive x direction has a one-dimensional elastic collision with a 5.0-kg object initially at rest. After the collision the 5.0-kg object has a velocity of 6.0 m/s in the positive x direction. What was the initial speed (in m/s) of the 3.0 kg object? a. 6.0 b. 7.0 c. 4.5 d. 8.0 e. 5.5 25. The figure shows a cyclic process on an ideal gas. What is the correct statement concerning the heat Q absorbed by the gas during the process indicated by the subscript? a. $Q_{ab} < 0$; $Q_{cd} > 0$. b. $Q_{bc} > 0$; $Q_{da} < 0$. c. $Q_{cycle} = 0$. d. $Q_{bc} < 0$; $Q_{da} > 0$. e. $Q_{cd} > Q_{ab}$ ## List your final answers in this table. Only the answer in this table will be graded.. | QUESTION | Q1: | Q2: | Q3: | Q4: | Q5: | Q6: | Q7: | Q8: | Q9: | Q10: | Q11: | Q12: | Q13: | |----------|------|-------------|------|------|-------|------|------|------|--------|------|------|------|------| | Final | | | | | | | | | | | | | | | Answer | | | | | | | | | | | | | | | QUESTION | Q14: | Q15: | Q16: | Q17: | Q18: | Q19: | Q20: | Q21: | Q22: | Q23: | Q24: | Q25: | | | Final | | | | | | | | | | | | | | | Answer | 811. | - 1 - 1 - 1 | | | 11112 | | | | 11 1 1 | -11 | | | |