

PHYSICS FOR MEDICAL AND DENTAL (0342105)

Recommended Textbook:

"Physics"

Joseph W. Kane and Morton M. Sternheim, "Physics", 3rd edition, John Wiley & Sons, 1988.

Recommended References:

Raymond A. Serway, Christ Vuille and Jerry Faughn, 8th edition, (Brooks/Cole, 200x).
 Raymond A. Serway and John W. Jewett Jr., "Physics For Scientists and Engineers with Modern Physics" 7th edition, (Thomson Learning, Belmont, CA, USA, 2007).
 David Halliday, Robert Resnick, and Jearl Walker, "FUNDAMENTALS OF PHYSICS", 5th edition

(Wiley, New York, 1997).

Lecturers: .

د احمد مساعده ، د محمود الجاغوب ، د سامي محمود ، د محمود الحسين

Course Content:

Chapter	Content	Suggested Problems
Part 1	Mechanics 1.2: Displacement; Average Velocity 1.3: Instantaneous Velocity	21,23,28,34,42,45 ,49,52
6 weeks	1.4: Acceleration1.5: Finding the Motion of an Object.1.6: The Acceleration of Gravity and Falling Objects.	
	 2.1: Vectors 2.2: Velocity in Two Dimension 2.3: Acceleration in Two Dimension 2.4: Finding the Motion of an Object. 2.5:Projectiles (including the Supplementary Topics) 	7,9,18,19,22,29,3
	2.6: Projectiles in Biomechanicals 3.1: Forces	20 21 40 46 50 66
	3.3: Newton's First Law 3.4: Equilibrium. 3.5: Newton's Third Law 3.6: Newton's Second Law	29,31,42,46,52,66 ,79,101,109
100 75 K	3.7: The Significance of Newton's Laws of Motion 3.8: Some Examples of Newton's Laws 3.12: Friction	* 18.6) ************************************
	 4.1: Torque 4.2: Equilibrium of Rigid Body. 4.3: The Center of Gravity. 4.5: Levers; Mechanical Advantage. 4.6: Muscles. 4.7: Levers in the Body 	7,8,11,13,17,21,4 1,51
	6.1: Work 6.2: Kinetic Energy and the Work-Kinetic Energy Theorem	6,11,15,22,37,69
-	 6.3: Potential Energy and Conservative Forces. 6.4: Dissipative Forces 6.5: Observations on Work and Energy 6.6: Solving Problems Using Work and Energy 6.9: Power 	St. galv *

Part 2	Heat (Thermodynamics)	3,8,17,18,19,26,2
	10.1: Temperature Scales.	7,42,52
4 weeks	10.2: Molecular Masses	1,72,52
	10.3: Pressure	
	10.4: The Ideal Gas Law	r vtu , ,e
	10.5: Gas Mixtures	
	10.6: Temperature and Molecular Energy.	
	10.7: Diffusion	
	10.8 Dilute Solutions; Osmotic Pressure	Land Brack
	11.1: Mechanical Work	1,2,7,8,9
	11.2: The first Law of Thermodynamics	1,-,,,,,,
	12.1: Thermal Expansion	3,7,14,19,30,31,3
	12.2 : Heat Capacity	7
	12.3: Phase Change	748 20 1
Part 3	Fluids	1,3,10,12,21,23,5
	13.1:Archimedes's Principle (Buoyant Forces)	8
1.5	13.2:The Equation of Continuity; Streamline Flow	Coulse
weeks	13.2:Bernoulli's Equation	
	13.4:Static Consequence of Bernoulli's Equation	
	13.5: The Rule of Gravity in Circulation	1 1 1 1 1 1 1
	13.6: Blood Pressure Measurements Using the	
	Sphygmomanometer	
Part 4	Optics and radiation Physics	1, 3, 4,7, 18, 21,
	24.1: Mirrors	33
1.5	24.2: Lenses	
weeks	24.3: Image Formation	
	24.4: The power of a Lens; Aberrations	
	24.5: The Simple Magnifier	
	24.7: The Human Eye	
	30.1: Radioactivity	2, 3, 8, 10
	30.2: Half-Life	
11 . 1	31.1: The Interaction of Radiation with Matter	
	31.2: Radiation Units	15, 17,29,40
	31.3: Harmful Effect of Radiation	
	31.5: Radiation in Medicine	

Exams	Weight	Date of the exam							
First	20 %	Tuesday, March 20 th 2012 (5:00-6:00	PM)						
Second	30 %	Wednesday, May 2 nd 2012 (5:00-6:00	PM)						
Final	50 %	To be announced later							

Important dates:

- * Sunday, May 20th. Last day of classes in the second semester 2011/2012
- * May 22- May 29. Final Examinations.

Physics Department

PHYSICS 105 (FIRST EXAM)
FALL SEMESTER 2011/2012 (Nov. 2nd, 2011)

Student's Nam	e (In Arabic):			Registration #	<i>‡</i> :	Sec#	
Useful Informa	ation: Some Results	Are Rounded CON	SIDER (ACCELERAT	ION DUE TO GRA	AVITY) $g = 9.8$	m/s ²	
		given as a functi $t = 0$ s and $t = 2$		10 m + (10 m/	s)t - (5 m/s ²)t ² .	What is the average	number (mining) and
A) 0 m/s	B) -5 m/s	C) 5 m/s	D) 10 m/s	E) -10	m/s		
	position as a fur non-zero consta		shown in Fig. 1. D	uring which ti	me interval cou	ld the object be possil	oly
A) 4.1 s to 5.9 E) There is no	,	s to 7.9 s consistent with c	C) 2.1 s to 3.9 s constant non-zero a	,	l s to 1.9 s	1 2 3 4 5 6	7 8 9 t(s)
						-2 -3 -4	IG. 1
		an object as a fu 0 s and time t = 9	unction of time. W 9.0 s?	hat is the avera	age speed of	x (m) 5 4 3 2	
A) 0.11 m/s	B) -0.11 m/s	C) 0.33 m/s	D) 0.56 m/s	E) -0.33 m/s		1 2 3 3 5	5 7 8 9 t (s)
\bigcirc			w v			4	FIG. 2
		_	of 8.00 m/s at an an ade of the ball's vel	~		tal. The ball leaves he ound?	r hand
A) 6.79 m/s	B) 7.45 m/s	C) 9.14 m/s	D) 1.22 m/s	E) 4.58 m/s			
	horizontally off what is the heigh	-	ff at 4.00 m/s. If th	e ball lands a o	distance of 30.0	m from the base of th	e
A) 92	2.0 m	B) 9.20 m	C) 138	m	D) 552 m	E) 276 m	
6) An object of	of weight W is in	free-fall close to	the surface of Ear	th. What is the	force that the o	bject exerts on Earth?	
A) a force equ C) a force gre E) cannot be	eater than W		force less than W o force at all nformation				₩ æ.

7) Two masses are connected by a string which goes over an ideal pulley (frictionless and massless) as shown in Fig. 3. Block A has a mass of 3.00 kg and can slide along a rough plane inclined 30.0° to the horizontal. The coefficient of static friction between block A and the plane is 0.400. What mass should block B have in order to start block A sliding up the ramp?

A) 2.54 kg

B) 0.46 kg

C) 3.20 kg

D) 4.52 kg

8) A 5.00-kg object is initially at rest. The object is acted on by a 9.00-N force toward the east for 3.00 s. No force acts on the object for the next 4.00 s. How far has the object moved during this 7.00 s interval?

A) 35.1 m

B) 29.7 m

C) 21.7 m

D) 8.10 m

E) 53.6 m

9) A box slides down an incline tilted at an angle 14.0° above horizontal, with an initial speed of 1.70 m/s. The coefficient of kinetic friction between the box and the incline is 0.380. How far does the box slide down the incline before coming to rest?

A) 2.33 m

B) 1.78 m

C) 0.610 m

D) 1.16 m

E) The box does not stop. It accelerates down the plane.

10) A 4.00-kg block rests between the floor and a 3.00-kg block as shown in Fig. 5. The 3.00-kg block is tied to a wall by a horizontal rope. If the coefficient of static friction is 0.800 between each pair of surfaces in contact, what minimum force must be applied horizontally to the 4.00-kg block to make it move?

A) 21.1 N

B) 16.2 N

C) 23.5 N

D) 78.5 N

E) 54.9 N

List your final answers in this table using Capital Letters Only the answer in this table will be graded..

Question	Q1:	Q2:	Q3:	Q4:	Q5:	Q6:	Q7:	Q8:	Q9:	Q10:
Final								750		
Answer		-					R		10 10 10 10 10 10 10 10 10 10 10 10 10 1	

The University of Jordan

PHYSICS DEPARTMENT

	(2nd EXAM)			an y timbre e di Catalonia qua que que pero en como una considera de como con espezio que y con caba de circula	ESTER (Dec. 20 th , 2	
Student's Name	(Arabic):	9 9 9 9 8 8 8 5 5 5 10 12 0 8 5 6 6 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1	Registr	ration #:	Sec #.	
Useful Informati	ion: Some Res	ults Are Rounded.	R = 8.314 J/(m	ole.K), $g = 10.0 \text{ m/s}$	s ² .	
			_	at one end (A) and ed so that the bear	_	the other er
A) 1.50 m	B) 1.71 m	C) 2.25 m	D) 1.29 m	E) 0.750 m	A M ananana	B www.ma
				s of 6 kg is located n). Where is the ce		
A) (2 m, 1 m),	B) (1 m, 0.5 n	n) C) (0.5 m, 1 m	n) D) (1 m, 2 m	E) (1 m, 1 m)		
		10 kg and walks one by this persor	_	kis for a distance of O friction)	f 100m with a cons	stant velocity
A) 0 J	B) 20 J C) 10	000 J D) 20	00 J E) N	None of the other c	hoices is correct.	
a height h, equ	al to height of e frictionless ra	the truck's bed. T	The work done	One possibility is in this case is W1 7 figure. In this case	The other possibili	ty is to slide
A) W1 = W2 C) W1> W2 E) No simple r	D) L	71 < W2 W1=hW2 sts between W1 a	and W2.	h.	L	*
				n inclined plane of s 10 m/s, how muc	, -	
A) 100 J	В) -100 Ј	C) 200 J	D) -200 J	E) 0	A STATE OF THE PARTY OF THE PAR	h=10 m
6) At what rate	e is a 60.0-kg be	oy using energy v	when he runs u	p a flight of stairs	10.0-m high, in 8.0	♥ 00 s?
A) 80.0 W	B) 4.80 kW	C) 0.0 V	W D) 48 W	E) 750 W		
,		nas a temperature re (in °C) will be	e of 25°C. If the	volume is held co	nstant and the pre	essure is

D) 323

B) 596

A) 174

C) 50

E) 25

8) The figure shows a uniform, horizontal beam (length = 10 m, mass = 25 kg) that is pivoted at the wall, with its far end supported by a cable that makes an angle of 51° with the horizontal. If a person (mass = 60 kg) stands 3.0 m from the pivot, what is the tension in the cable?

A)
$$0.83 \times 10^3$$
 N

B)
$$0.30 \times 10^3$$
 N

D)
$$0.42 \times 10^3$$
 N

E)
$$3.00 \times 10^3 \text{ N}$$

9) A constant volume closed container of gas is at a pressure 1.00×10^5 N/m² and a temperature 20°C. What is the pressure (in 10⁵ N/m²) if the temperature of the gas is increased to 60.0°C?

10) How many water molecules are there in 36 g of water? Express your answer as a multiple of Avogadro's number NA. (The molecular structure of a water molecule is H2O.). The atomic masses of H and O are 1.008 u and 15.999 u, respectively.

11) A gas consists of particles each of mass 3.00×10^{-26} kg. What is the pressure (in N/m²) in a gas of these particles if there are 2.00 × 10²⁵ particles per cubic meter of gas and the rms speed of the particles is 400 m/s?

A)
$$4.80 \times 10^{4}$$

B)
$$1.60 \times 10^4$$

C)
$$1.01 \times 10^5$$
 D) 9.60×10^4

E)
$$3.20 \times 10^4$$

12) Two identical containers, A and B, hold equal amounts of the same ideal gas at the same Po, Vo and To. The pressure of A then decreases by a half while its volume doubles; the pressure of B doubles while its volume decreases by a half. Which statement correctly describes the temperatures of the gases after the changes?

A)
$$T_A = 0.5T_B = T_O$$
.

B)
$$T_B = 0.5T_A = T_O$$
.

C)
$$T_B = 2T_A = T_O$$
.

D)
$$T_A = T_B = T_O$$
.

E)
$$T_B = 2T_A = T_O$$
.

List your final answers in this table. Only the answer in this table will be graded.

Question	Q1:	Q2:	Q3:	Q4:	Q5:	Q6:	Q7:	Q8:	Q9:	Q10:	Q11:	Q12:
Final												
Answer												

The University of Jordan

PHYSICS DEPARTMENT

	(2nd EXAM)			an y timbre e di Catalonia qua que que pero en como una considera de como con espezio que y con caba de circula	ESTER (Dec. 20 th , 2	
Student's Name	(Arabic):	9 9 9 9 8 8 8 5 5 5 10 12 0 8 5 6 6 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1	Registr	ration #:	Sec #.	
Useful Informati	ion: Some Res	ults Are Rounded.	R = 8.314 J/(m	ole.K), $g = 10.0 \text{ m/s}$	s ² .	
			_	at one end (A) and ed so that the bear	_	the other er
A) 1.50 m	B) 1.71 m	C) 2.25 m	D) 1.29 m	E) 0.750 m	A M ananana	B www.ma
				s of 6 kg is located n). Where is the ce		
A) (2 m, 1 m),	B) (1 m, 0.5 n	n) C) (0.5 m, 1 m	n) D) (1 m, 2 m	E) (1 m, 1 m)		
		10 kg and walks one by this persor	_	kis for a distance of O friction)	f 100m with a cons	stant velocity
A) 0 J	B) 20 J C) 10	000 J D) 20	00 J E) N	None of the other c	hoices is correct.	
a height h, equ	al to height of e frictionless ra	the truck's bed. T	The work done	One possibility is in this case is W1 7 figure. In this case	The other possibili	ty is to slide
A) W1 = W2 C) W1> W2 E) No simple r	D) L	71 < W2 W1=hW2 sts between W1 a	and W2.	h.	L	*
				n inclined plane of s 10 m/s, how muc	, -	
A) 100 J	В) -100 Ј	C) 200 J	D) -200 J	E) 0	A STATE OF THE PARTY OF THE PAR	h=10 m
6) At what rate	e is a 60.0-kg be	oy using energy v	when he runs u	p a flight of stairs	10.0-m high, in 8.0	♥ 00 s?
A) 80.0 W	B) 4.80 kW	C) 0.0 V	W D) 48 W	E) 750 W		
,		nas a temperature re (in °C) will be	e of 25°C. If the	volume is held co	nstant and the pre	essure is

D) 323

B) 596

A) 174

C) 50

E) 25

8) The figure shows a uniform, horizontal beam (length = 10 m, mass = 25 kg) that is pivoted at the wall, with its far end supported by a cable that makes an angle of 51° with the horizontal. If a person (mass = 60 kg) stands 3.0 m from the pivot, what is the tension in the cable?

A)
$$0.83 \times 10^3$$
 N

B)
$$0.30 \times 10^3$$
 N

D)
$$0.42 \times 10^3$$
 N

E)
$$3.00 \times 10^3 \text{ N}$$

9) A constant volume closed container of gas is at a pressure 1.00×10^5 N/m² and a temperature 20°C. What is the pressure (in 10⁵ N/m²) if the temperature of the gas is increased to 60.0°C?

10) How many water molecules are there in 36 g of water? Express your answer as a multiple of Avogadro's number NA. (The molecular structure of a water molecule is H2O.). The atomic masses of H and O are 1.008 u and 15.999 u, respectively.

11) A gas consists of particles each of mass 3.00×10^{-26} kg. What is the pressure (in N/m²) in a gas of these particles if there are 2.00 × 10²⁵ particles per cubic meter of gas and the rms speed of the particles is 400 m/s?

A)
$$4.80 \times 10^{4}$$

B)
$$1.60 \times 10^4$$

C)
$$1.01 \times 10^5$$
 D) 9.60×10^4

E)
$$3.20 \times 10^4$$

12) Two identical containers, A and B, hold equal amounts of the same ideal gas at the same Po, Vo and To. The pressure of A then decreases by a half while its volume doubles; the pressure of B doubles while its volume decreases by a half. Which statement correctly describes the temperatures of the gases after the changes?

A)
$$T_A = 0.5T_B = T_O$$
.

B)
$$T_B = 0.5T_A = T_O$$
.

C)
$$T_B = 2T_A = T_O$$
.

D)
$$T_A = T_B = T_O$$
.

E)
$$T_B = 2T_A = T_O$$
.

List your final answers in this table. Only the answer in this table will be graded.

Question	Q1:	Q2:	Q3:	Q4:	Q5:	Q6:	Q7:	Q8:	Q9:	Q10:	Q11:	Q12:
Final												
Answer												

Student Nai	me:			1
Student Nui		region is to a serious transferrable and the serious of the analysis and and the serious serio		Number:
				= 2.1 J/g. K; L_f (ice) = 333 J/g
$g = 9.8 \text{ m/s}^2$. ρ_{wa}	$a_{\text{ter}} = 1000.0 \text{ kg/m}^3 \text{ and}$	$d P_{atm} = 1.013 \times 10^5 Pa.$	Note: Some Re	esults Are Rounded
		e moving along the x e (in m) at $t = 3.0$ s?		/hat is the total
A) -1	B) -2	C) 0		1 V _r ^(m/s)
D) 2	E) 1			0 1 2 3
		el ground at an angle he initial position wo		norizontal with a speed of und?
A) 164 m	B) 105 m	C) 203 m	D) 54.2 m	E) 12.4 m
	orce (in N) exerted ean depth of 100 r		60-cm diameter s	ubmarine window (circular)
A) 69272	B) 305730	C) 12229215	D) 152823	E) 277089
		er is compressed at 7 les) in the cylinder.	.5 atmospheric pr	essure and 300 K. What is
A) 305	B) 30	C) 61	D) 0.61	E) 61000
should t	he water pressure	a water tank at the t at the base of the bu atm = 1.013 bar)		building, what eed of water is constant
A) 1.0 bars	B) 0.3 bars	C) 0.5 bars	D) 3.0 bars	E) 2.0 bars
				to the horizontal and with high is the building (in m)?
A) 25	B) 4	C) 10	D) 64	E) 14
7) The temper	rature of 0.5 mole		rigid container is	raised from 300 K to 434 K.
		C) 835.6		
8) The linear	expansion coeffic	ient for Al is $\alpha = 2.2$ emperature of the pla	$\times 10^{-5} \text{ K}^{-1}$. What is	s the increase in area of °C?
A) 2.2 cm^2	B) 22 cm ²	C) 4.4 cm ²	D) 6.6 cm ²	E) 66 cm ²

	s greater density th r. Which statemen		ooat floats in equilib	rium in both fresh water
B) Buoyant force C) Buoyant force D) The volume	ce excreted by freslower is the same in boot of the displaced w	n water is greater th	an that by fresh water nan that by salt water noth.	er.
	ock of ice at –10 °C absorbed in the pro		converted into water	er at 10 °C. What is the
A) 167	B) 177	C) 198	D) 21 E) 188	
			early winter due to:	A 11
B) Water mixing C) Water mixing D) The lower of	ng resulting from the density of ice relati	he lower density of he higher density of ve to water.	water at lower temp f water at lower temp ee waves in early wi	peratures.
body to decreas	se to one-fourth its). How long will it to original magnitude ife (T_b) of 180 day	? Given that (131 I) ha	I radioactivity in her as physical half-life (T_p)
A) 16.2 days	B) 360 days	C) 376.2 days	D) 15.5 days	E) 7.75 days
13) What volur liquid of density	me fraction of a culty ($\rho_0 = 1.01 \text{ g/cm}^3$	be of density ($\rho = 0$)?	.50 g/cm³) would sir	ak under the surface of a
A) 0.80	B) 0.67	C) 0.33	D) 0.:50	E) 0.20
14) An ideal ga		abatic expansion w	hile doing 25 J of w	ork. What is the change
A) zero	B) 25 J	C) -25 J	D) 50 J	E) -50 J
15) The work in internal ener		as system in an isot	hermal process is 40	0 J. What is the change
A) -400 J	B) zero	C) 200 J	D) 400 J	E) none of the above
concentration	of sugar in the solu	ution (in moles/m³)	nominal temperature is: by that of water, 100	
A) 29.2	B) 20.0	C) 2.0	D) 41.3	E) 10.0

23) A uniform 100 N beam is held in a vertical position by a pin (P) at its lower end and a cable at its upper end. A horizontal force of magnitude F = 75 N acts as shown in the figure. What is the tension in the cable?

A) 47 N

B) 69 N

C) 61 N

D) 94 N

E) 54 N

24) In the Figure, fluid fills the container shown here. At which of the indicated points is the pressure greatest?

A) A

B)B

C) C

D) D

E) The pressure is the same at each of the labeled points.

25) In the shown Figure, the net work done by the gas during the close cycle is equal to:

A) 4.00 kJ

B) 12.0 kJ

C) 16.0 kJ

D) 20.0 kJ

E) 8.00 kJ

List your final answers in this table. Only the answer in this table will be graded

QUESTION	Q1:	Q2:	Q3:	Q4:	Q5:	Q6:	Q7:	Q8:	Q9:	Q10:	Q11:	Q12:	Q13:
Final									1,	,			
Answer													
QUESTION	Q14:	Q15:	Q16:	Q17:	Q18:	Q19:	Q20:	Q21:	Q22:	Q23:	Q24:	Q25:	
Final		Distriction Later, Property States	Constitution of the second second										
Answer													

**Text Book: "Physics" by Joseph Kane & Morton Sternheim 3rd Edition, 1988, New York, John Willey and Sons Inc.

Selected References:

1. "Fundamentals of Physics" by D. Halliday & R. Resnick, 4th Edition, 1993, John Willey and Sons Inc.

"Physics for Scientists and Engineers" by R. Serway, 5th Edition, Saunders, 2000.

Course Content:

Chapter No.	Required Sections	Suggested Problems
1	1.1-1.6	21,23,28,34,42,45,49,52
2	2.1-2.5	7,9,18,19,22,29,31,36
3	3.1-3.8, 3.12	29,31,42,46,52,66,79,101,109
4	4.1-4.3	7,8,11,13,17,21,41,51
6	6.1-6.6	6,11,15,22,37,69
7	7.1-7.4	3,4,12,15,20,26,29,30
10	10.1-10.8	3,8,17,18,19,26,27,42,52
11	11.1-11.2	1,2,7,8,9
12	12.1-12.6	3,7,14,19,30,31,37
13	13.1-13.4	1,3,10,12,21,23,58
16	16.1-16.4,16.8-16.10	5,6,9,11
17	17.1-17.5,17.12	5,11,23,31,37,43,45
30	30.1-13.2	
31	31.1-31.4	7 .

** Examinations:

To be Announced Later

Lecturers:

د احمد مساعده ، د محمود الجاغوب ، د سامي محمود

PHYSICS DEPARTMENT

MENT PHYSICS 105 (FIRST EXAM)
FALL SEMESTER 2010/2011 (Oct. 24th, 2010)

Studer	nt's Name (In	Arabic):		F	Registration #	# :					
Useful	Information:	Some Results Are R	tounded CONSID	ER (ACCELERA	ATION DUE T	O GRAVITY) §	$g = 9.8 \text{ m/s}^2$.				
1.	A particle mo $x = 10 \text{ m}$. Its	oving with a const position 5.0 s late	ant acceleration r is $x = -30$ m. V	has a velocity What is the acce	of 20m/s wheleration of the	en its position he particle in	n is (m/s ²).				
	a) -7.3	b) -8.9	c)-11.	2 d)	-15	e) 8.0					
2.		projected vertically e magnitude of the									
	a) 9.8	b) 0.0	c) 34.3	d)	14.3	e) 20					
3.		cked from the growthe ball is 20 m/s,									
	a) 0.00	b) 20.0	c) 12.5		d) 17.32	e) 10.0					
4,	angle of 37	er 40 m a way from a bove the horizon the building?									
	a) 29.03	b) 16.48	c) 20.80	d) 1.00	,	18.70					
5.	In the figure shown $M = 10$ kg and $m = 4$ kg. The coefficient of kinetic friction between the inclined surface and mass m is $\mu_k = 0.3$. Given that the system started from rest, find the speed (in m/s) of mass M when it has fallen a distance of 2 m.										
	a) 2.96 c) 4.42 d) 2.1	b) 3.60 d) 3.96				m	M				
					300		12 2 3 A				
6.		zontal surface on v 25 N. The tension			onless. If m	= 2.0 kg, and	the magnitude				
	a) 2.5	b) 0.0	c) 10.0		2 2m	1	2m				
	d) 15.0	e) 5.0		m							

- 7. A 3-kg block is pushed against the wall by a force F = 40 N that makes a 30° angle with the horizontal. If the force is just enough to hold the block without sliding down, then the coefficient of static friction (μ_s) is equal to:
 - a) 0.168
- b) 0.200
- c) 0.271
- d) 0.98
- e) 0.262

- 8. A stone is projected with an initial speed $v_o = 10$ m/s at 30° above the horizontal from the top of a building which is 30 m high. The speed (in m/s) of the stone just before it hits the ground is
 - a) 26.23
- b) 5.00
- c) 8.67
- d) 10.0
- e) 0
- 9. A plane flies south at 500 km/h for 2h and then flies west at 500 km/h for 1 h. What is its average speed (in km/h)?
 - a) 372.7
- b) 500
- c) 0
- d) 333.3
- e) 166.7
- 10. The diagram below shows 3 vectors all of equal length. Which statement below is true?

a)
$$\vec{A} + \vec{B} = \vec{A} - \vec{C}$$

b)
$$\vec{A} + \vec{B} = \vec{B} - \vec{C}$$

c)
$$\vec{A} - \vec{B} = 2\vec{A} - \vec{C}$$

d)
$$\vec{A} - \vec{B} = 2\vec{A} + \vec{C}$$

e)
$$2\vec{A} + 2\vec{B} = 2\vec{C}$$

List your final answers in this table. Only the answer in this table will be graded.

Question	Q1:	Q2:	Q3:	Q4:	Q5:	Q6:	O 7:	08:	09:	O10:
Final										
Answer										

PHYSICS 105 (2nd EXAM)

SECOND SEMESTER (Dec. 5th, 2010)

Jsetul Information: Soi	me Results Are Rour	ided CONSIDER (AC	CELERATION DUE	FO GRAVITY) $g = 9.8 \text{ m/s}^2$
. A car traveling at 1 the windshield (مامي head is 4kg, the av	head fi (الزجاج الا	with a tree. An uni	restrained (ام الامان) rest in 0.0016 s. If	لم يربط حز) passenger strikes the mass of the passenge
(a) 31250	(b) 25000	(c) 20000	(d) 50000	(e) 88500
the composite of	ject is moving at	ides with and sticks 3.0 m/s in a direction and of the 2.0-kg obj	on parallel to the in	object. After the collision itial direction of motion of the sion in (m/s).
(a) 27.0	(b) 19.7	(c) 3.0	(d) 28.3	(e) 1.5
3. A 2.5-kg object fal	ls vertically dov	vnward in a visco	us medium at a co	onstant speed of 2.5 m/s. erts on the object as
(a) +19.60	(b) -19.60	(c) +1.96	(d) -1.96	(e) +39.2
				0 4 8 t (s
5. A steel band exerts a torque in (N.1		on a tooth at point about the point A?	B as in the figure. V	0 4 8
			B as in the figure. V	0 4 8
(a) 0.712 (d) 0.0	(b) 0.480 (e) 0.831 pushed up a fricontal force F = 6	(c) 0.642	e a from point A to	0 4 8 What is the

7. In the figure, the weight of the rod $W = 500 \text{ N}$, and its length $l = 8 \text{ m}$. The rod is at equilibrium making an angle 45° with the x-axis. The tension T in the rope connecting the end of the rod to the wall is: (a) 50 N (b) 352 N (c) 250 N (d) 500 N (e) 707 N	
8. In the above question, what is the vertical component of the reaction force that acts on the rod by the hinge?	
(a) 352 N (b) 500 N (c) 707 N (d) 100 N (e) 250 N	
9. When a ball rises vertically to a height h and returns to its original point of projection, the work done on it by the gravitational force is	
(a) 0. (b) $-mgh$ (c) $+mgh$. (d) $-2mgh$. (e) $+2mgh$.	
 (a) It moves with a constant speed. (b) The net external force acting on it is zero. (c) The net torques acting on it about any axis is zero. (d) The net internal and external forces acting on it is zero (e) The net external force is zero, and the net external torque on it about any axis is zero. 	
11. An object of mass m1 moving in the positive x – direction undergoes a head-on elastic collision with a mass m2 which is at rest. Which of the following statements is WRONG?	
 a) After the collision the two objects may move in opposite directions. b) After the collision the two objects may move in the same direction. c) After the collision both objects can be at rest. d) Kinetic energy is conserved in this collision. e) During the collision they act on each other with equal and opposite forces. 	
12. A small object of mass <i>m</i> slides along the frictionless track in the figure, staring from rest at point A. What is its speed (in m/s) at point B? A	
(a) 6.3 (b) 7.7 (c) 0.0	
(d) 9.9 (e) 4.4	
List your final answers in this table. Only the answer in this table will be graded	
Question Q1: Q2: Q3: Q4: Q5: Q6: Q7: Q8: Q9: Q10: Q11: Q12:	
Final	

Physics 105 Final Exam

First Semester 2010/2011 9/1/2011

Student Name:	10
Student Number:	Section Number:
Information : $R = 8.314 \text{ J/mole.K}$; $k_B = 1.38 \times 10^{-2}$	3 J/K; c_{P} (water) = 4.2 J/g. K; c_{P} (ice) = 2.1 J/g. K; L_{f} (water) = 333 J/g.

$$(e) -6$$

2. What is the number of molecules (in units of Avogadro's number N_A) in a 1.1 kg of a gas whose molecular mass is 44.0 u?

a.
$$1.1 N_A$$
.

b. 25
$$N_A$$
.

3. Find the total force (in N) exerted on the outside of a 30-cm diameter submarine window at an ocean depth of 100 m. Assume
$$\rho_{water} = 1000.0 \text{ kg/m}^3$$
 and $P_{atm} = 1.013 \times 10^5 \text{ Pa}$.

5. An ideal gas is taken from an initial
$$(P_i, V_i, T_i)$$
 to a final state (P_f, V_f, T_f) in an *adiabatic* process. In this process:

a.
$$T_i = T_f$$

b.
$$O = W$$
.

c.
$$\Delta U = Q$$

$$d. P_i = P_d$$

b.
$$Q = W$$
. c. $\Delta U = Q$. d. $P_i = P_f$. e. $\Delta U = -W$.

a.
$$Q = W$$
.

b.
$$\Delta U = Q$$

c.
$$\Delta U = -W$$

d.
$$Q = 0$$

e. The gas looses heat
$$(Q < 0)$$
 in the process.

8. The linear expansion coefficient for Al is
$$\alpha = 2.2 \times 10^{-5} \text{ K}^{-1}$$
. What is the increase in volume of a block of 1 m³ of Al if the temperature of the block is raised by 10 °C?

c.
$$660 \text{ cm}^3$$

$$d. 22 cm^3$$

	an initial spe	ovn upward from the sed of 15 m/s. If the b. 14	e stone is in flight	for 3.0 s, how	tall is the buil	ding (in m)
11.	A 0.5 kg block	b. 14 of ice at – 5 °C is hat absorbed in the	neated until it is co			What is the
	a. 167	b. 172	c. 193	d. 21	e. 188	haran a hasalqada
12.		the deep waters in				r _E 1
	b. Water m c. Water m d. The lowe e. Water m	n of air molecules to ixing resulting from ixing resulting from er density of ice relations resulting from ixing resulting resulti	m the lower densith the higher densite to water. In turbulence and	ty of water at lot the see waves i	ower temperat n early winter	ures.
13.		n ideal gas has a essure is double				constant
	-a. 174	b. 323	c. 50 d. 5	96 e.	25	
14.		f a cube of density = 1.2 g/cm ³)?	$(\rho = 0.8 \text{ g/cm}^3) \text{ w}$	ould sink unde	r the surface o	f a liquid o
	a. 0.80	b. 0.67	c. 0.33 d. 0.3	2 e	. 0.5	
15.	should the wa	pumped into a wa ter pressure at the ater pipe? ? (1 bar	base of the building	ng be if the spee		
	a. 1.0 bars	b. 2.0 bars	c. 0.5 bars	d. 3.0 bars	e. 0.3 bar	·s
16.	embedded in	s fired into a 3.0-k it. The pendulum initial speed of th	subsequently rise	s a vertical dista		
	a. 768	b. 385	c. 250	d.820	e. 405	
17.	shown in the figures P , and a. $v_a < v_b$. b. $P_a > P_b$ s	reamline, nonvisco igure. Which of the d flow rate Q at the ince no work is do (Q is the flow rate	e following statem to two ends of the some during a constant	nents is correct section? $A_a = \frac{1}{2}$	regarding the	

18. The level of the fluid with density $\rho_s = 1000 \text{ kg/m}^3$ in the left arm of the manometer is 0.2 m above the manometer fluid of density $\rho_f = 800 \text{ kg/m}^3$ in the right arm. Which of the following relations is true?

- a. P_G is 2000 Pa higher than P_{atm} .
- b. $P_G = P_{atm}$.
- c. P_G is 2000 Pa lower than P_{atm} .
- d. P_G is 4000 Pa higher than P_{atm} .
- e. P_G is 6000 Pa higher than P_{atm}
- 19. Two masses (m₁=2kg, m₂=3kg) connected by a cord and m₂ pulled by a force of 9 Newton. The minimum value of "f" (in N) which is needed to keep the cord tight:
 - a) 6 d) 15
- b. 9
- c.12
- e. 18

- 20. If two objects M_1 , M_2 ($M_1 = M_2$) are connected by a light inextensible cord which is attached to the ceiling of an elevator that is accelerating upward at 2 m/s², the ratio T/T_1
 - a. 5/3
- b. 2
- c.1
- e. 0.5

21. The frictional force between mass 2M and the surface is zero, and the frictional force between masses M and 2M causes both masses to move together when a F = 1.2 N is applied to 2M. If M = 1 kg, what is the frictional force exerted by the large block on the small block?

d. 3/2

- a. 0.4 N to the lef
- b. 0.8 N to the right
- c. 0.4 N to the right e. 1.2 to the right
- d. 0.8 to the left
- F = 1.2 N
- 22. The absolute temperature of an object is 300 K. What is its temperature on the Fahrenheit scale?
 - a. 80 °F.
- b. 96°F.
- c. 106 °F.
- d. 47 °F.
- e. 90 °F.
- 23. A block slides on a rough horizontal surface from point A to point B. A force (P = 2.0 N) acts on the block between A and B, as shown. Points A and B are 1.5 m apart. If the kinetic energies of the block at A and B are 5.0 J and 4.0 J, respectively, how much work is done on the block by the force of friction as the block moves from A to B?
 - a. -3.3 J
- b. +1.3 J
- c. +3.3 J

- d. -1.3 J
- e. +4.6 J

23. A uniform 100 N beam is held in a vertical position by a pin (P) at its lower end and a cable at its upper end. A horizontal force of magnitude F = 75 N acts as shown in the figure. What is the tension in the cable?

a. 47 N

b. 69 N

c. 61 N

d. 94 N

e. 54 N

24. A 3.0-kg object moving in the positive x direction has a one-dimensional elastic collision with a 5.0-kg object initially at rest. After the collision the 5.0-kg object has a velocity of 6.0 m/s in the positive x direction. What was the initial speed (in m/s) of the 3.0 kg object?

a. 6.0

b. 7.0

c. 4.5

d. 8.0

e. 5.5

25. The figure shows a cyclic process on an ideal gas. What is the correct statement concerning the heat Q absorbed by the gas during the process indicated by the subscript?

a. $Q_{ab} < 0$; $Q_{cd} > 0$.

b. $Q_{bc} > 0$; $Q_{da} < 0$.

c. $Q_{cycle} = 0$.

d. $Q_{bc} < 0$; $Q_{da} > 0$.

e. $Q_{cd} > Q_{ab}$

List your final answers in this table. Only the answer in this table will be graded..

QUESTION	Q1:	Q2:	Q3:	Q4:	Q5:	Q6:	Q7:	Q8:	Q9:	Q10:	Q11:	Q12:	Q13:
Final													
Answer													
QUESTION	Q14:	Q15:	Q16:	Q17:	Q18:	Q19:	Q20:	Q21:	Q22:	Q23:	Q24:	Q25:	
Final													
Answer	811.	- 1 - 1 - 1			11112				11 1 1	-11			